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Abstract

Face detection plays an important role in many vision

applications. Since Viola and Jones [1] proposed the first

real-time AdaBoost based object detection system, much ef-

fort has been spent on improving the boosting method. In

this work, we first show that feature selection methods other

than boosting can also be used for training an efficient ob-

ject detector. In particular, we have adopted Greedy Sparse

Linear Discriminant Analysis (GSLDA) [2] for its computa-

tional efficiency; and slightly better detection performance

is achieved compared with [1]. Moreover, we propose a

new technique, termed Boosted Greedy Sparse Linear Dis-

criminant Analysis (BGSLDA), to efficiently train object de-

tectors. BGSLDA exploits the sample re-weighting property

of boosting and the class-separability criterion of GSLDA.

Experiments in the domain of highly skewed data distri-

butions, e.g., face detection, demonstrates that classifiers

trained with the proposed BGSLDA outperforms AdaBoost

and its variants. This finding provides a significant opportu-

nity to argue that Adaboost and similar approaches are not

the only methods that can achieve high classification results

for high dimensional data such as object detection.

1. Introduction

Face detection has numerous computer vision applica-

tions such as intelligent video surveillance, vision based

teleconference systems and content based image retrieval.

Face detection is challenging due to the variations of the vi-

sual appearances, poses and illumination conditions. Due

to the recent success of Viola & Jones’ real-time AdaBoost

based face detector [1], a lot of incremental work has been

proposed. Most of them have focused on improving the un-

derlying boosting method or accelerating the training pro-

cess. For example, AsymBoost was introduced in [3] to

alleviate the limitation of AdaBoost in the context of highly

skewed example distribution. Li et al. [4] proposed Float-

Boost for a better detection accuracy by introducing a back-

ward feature elimination step into the AdaBoost training

procedure. Wu et al. [5] used forward feature selection for

fast training by ignoring the re-weighting scheme in Ad-

aBoost. Another technique based on the statistics of the

weighted input data was used in [6] for even faster train-

ing. [7] introduced a cost-sensitive extension to boost-

ing with optimal cascade design. In this work, we pro-

pose an improved learning algorithm for face detection,

dubbed Boosted Greedy Sparse Linear Discriminant Anal-

ysis (BGSLDA).

Viola and Jones [1] introduced a framework for select-

ing discriminative features and training classifiers in a cas-

caded manner. The cascade framework allows most non-

face patches to be rejected quickly before reaching the final

node, resulting in fast performance. The robustness of the

system comes from the use of AdaBoost algorithm to train

cascade nodes. AdaBoost is a forward stage-wise additive

modeling with the exponential loss function. It chooses a

small subset of weak classifiers and assign them with proper

coefficients. The proposed BGSLDA differs from the origi-

nal AdaBoost in the following aspects. Instead of selecting

decision stumps which minimize the exponential loss func-

tion as in AdaBoost, the proposed algorithm finds a new

weak leaner that maximizes the class-separability criterion.

As a result, the coefficients of selected weak classifiers are

updated repetitively during the learning process according

to this criterion.

Our technique is different from [5]. The authors of

[5] proposed the concept of Linear Asymmetric Classifier

(LAC) by addressing the asymmetries and asymmetric node

learning goal in the cascade framework. Unlike our work

where the features are selected based on the Fisher Linear

Discriminant Analysis (LDA) criterion, [5] selects features

using AdaBoost/AsymBoost algorithm. Given the selected

features, LAC finds an optimal linear classifier for the node

learning goal. Wu et al. pointed out that LDA can also be

applied instead of LAC.

The key contributions of this work are the following. (1)

We introduce GSLDA as an alternative approach for train-

ing face detectors. Similar results are obtained compared

with Viola & Jones’ approach. (2) We propose a new algo-

rithm, BGSLDA, which combines the sample re-weighting

schemes typically used in boosting into GSLDA. Experi-

ments show that BGSLDA can achieve better detection per-



formances. (3) We show that feature selection and classifier

training techniques can have different objective functions

(in other words, the two processes can be separated) in the

context of training a visual detector. This offers more flexi-

bility and even better performance. Previous boosting based

approaches select features and train a classifier simultane-

ously. (4) Our results confirm that it is beneficial to consider

the highly skewed data distribution when training a detec-

tor. LDA’s learning criterion already incorporates this im-

balanced data information. Hence it is better than standard

AdaBoost’s exponential loss for training an object detector.

2. Algorithms

In this section, we present alternative techniques to Ad-

aBoost for object detection. We start with a short expla-

nation of the concept of GSLDA [8]. Next, we show that

like Asymmetric AdaBoost [3], LDA is better at handling

asymmetric data than AdaBoost. We also propose the new

algorithm that makes use of sample re-weighting scheme

commonly used in AdaBoost to select a subset of relevant

features for training the GSLDA classifier.

2.1. Greedy Sparse LDA

Fisher linear discriminant analysis can be cast as a gener-

alized eigenvalue decomposition. Given a pair of symmetric

matrix corresponding to the between-class (SB) and within-

class covariance matrices (SW ), we maximize a class-

separability criterion defined by a generalized Rayleigh

quotient:

max
w

w
T SBw

w
T SW w

. (1)

The optimal solution of a generalized Rayleigh quo-

tient is the eigenvector corresponding to the maximal eigen-

value. Since calculating all the over-complete visual fea-

tures would be very inefficient, sparse LDA methods are

preferable over regular LDA methods. In [8], Moghaddam

et al. presented a technique to compute optimal sparse lin-

ear discriminants using branch and bound approaches. Nev-

ertheless, finding the globally optimal solutions for high

dimensional data is computationally infeasible. Greedy

Sparse LDA (GSLDA) instead tries to find a nearly opti-

mal solution to this problem in a greedy way [2]. The rank-

one matrix update technique can be used to calculate matrix

inverse very efficiently. A speedup of 1000× in the compu-

tation time is achieved for two-class problems [2]. GSLDA

works by sequentially adding the new variable that yields

the maximum eigenvalue (forward selection) until the max-

imum number of elements are selected or some predefined

condition is met.

Note that we have experimented with other sparse linear

regression and classification algorithms, e.g. ℓ1-norm lin-

ear support vector machines, ℓ1-norm regularized log-linear

models, etc. However, the major drawback of these tech-

niques is that they do not have an explicit parameter that

controls the number of features to be selected. The trade-

off parameter (regularization parameter) only controls the

degree of sparseness. One has to tune this parameter us-

ing cross-validation. Also ℓ1 penalty methods often lead to

sub-optimal sparsity [9]. Hence, we have decided to apply

GSLDA, which makes use of greedy feature selection and

the number of features can be predefined.

The following paragraph explains how we apply GSLDA

classifier [2] as an alternative feature selection method to

Viola & Jones’ classical framework [1]. Details such as

the explanation of cascaded classifiers can be found in [1].

The GSLDA object detector operates as follows (see Algo-

rithm 1). The set of selected features is initialized to an

empty set. The first step (lines 4 − 5) is to train decision

stumps1 for each Haar-like rectangle feature and store the

threshold which gives the minimal classification error into

the lookup table. In order to achieve maximum class sepa-

ration, the output of each decision stump is examined and

decision stump whose output yields the maximum eigen-

value is sequentially added to the list (line 7, step (1)). The

process continues until the predefined condition is met (line

6).

2.2. LDA on asymmetric data

In the cascaded classifiers, we would prefer to have a

classifier that produces high detection rates without intro-

ducing many false positives. Binary variables (decision

stump outputs) take the Bernoulli distribution and it can be

easily shown that the log likelihood ratio is a linear function.

In the Bayes sense, linear classifiers are optimum for nor-

mal distributions with equal covariance matrices. However,

in practice, linear classifiers have been empirically shown to

perform well not only for normal distributions with unequal

covariance matrices but also non-normal distributions. A

linear classifier can be written as

F (x) =

{

+1 if
∑n

t=1 wtht(x) + θ ≥ 0;

−1 otherwise,
(2)

where h(·) defines a function which returns binary outcome,

x is the input image features and θ is an optimal threshold

such that the minimum number of examples are misclassi-

fied. In this paper, our linear classifier is the summation

of decision stump classifiers. By central limit theorem, the

linear classifier is close to normal distribution for large n.

The asymmetric goal for training cascaded classifiers can

be written as a trade-off between false acceptance rate ǫ1

1We introduced nonlinearity into our system by applying decision

stump learning algorithm to raw feature values. By nonlinearly transform-

ing the data, the input can now be separated more easily using linear clas-

sifiers. Note that any classifiers can be applied here.



Input:

• A positive training set and a negative training set;

• A set of haar rectangle features h1, h2, · · · ;

• Dmin: minimum acceptable detection rate in each cascade level;

• Fmax: maximum false positive rate in each cascade level;

• Ftarget: target overall false positive rate;

Initialize: i = 0; Di = 1; Fi = 1;1

while Ftarget < Fi do2

i = i + 1; t = 0; ft = 1 (false positive rate);3

foreach feature do4

Find a decision stump threshold θ with the smallest error on the5

training set;

while ft > Fmax do6

(1) t = t + 1;7

(2) Add the best decision stump classifier which yields the max-

imum class separation;

(3) Lower classifier threshold such that Dmin holds;

(4) Update ft using this classifier threshold;

Di = Di−1 × Dmin; Fi = Fi−1 × ft; and remove correctly8

classified negative samples from the training set;

if Ftarget < Fi then9

Evaluate the current cascaded classifier on the negative images10

and add misclassified samples into the negative training set;

Output:

• A cascade of classifiers for each cascade level i = 1, · · · ;

• Final training accuracy: Fi and Di;

Algorithm 1: The training algorithm for building the cascade of GSLDA

object detector.

and false rejection rate ǫ2 as r = ǫ1 + µǫ2 where µ is a

trade-off parameter. The objective of LDA is to maximize

the projected between-class covariance matrix (distance be-

tween the mean of two classes) and minimize the within-

class covariance matrix (total covariance matrix). The se-

lected weak classifier is guaranteed to achieve this goal.

Having large projected mean difference and small projected

class variance indicates that the data can be separated more

easily and, hence, the asymmetric goal can also be achieve

more easily. On the other hand, AdaBoost minimizes sym-

metric exponential loss that does not guarantee high detec-

tion rates with few false positives [3]. The selected features

are therefore no longer optimal for the task of rejecting neg-

ative samples.

Another way to think of this is that AdaBoost sets ini-

tial positive and negative sample weights to 0.5/Np and

0.5/Nn (Np and Nn is the number of positive samples and

negative samples). The prior information about the num-

ber of samples in each class is then completely lost during

training. In contrast, LDA takes the number of samples in

each class into consideration when solving the optimiza-

tion problem, i.e., the number of samples is used in cal-

culating the between-class covariance matrix (SB). In other

words, SB is the weighted difference between class mean

and sample mean. SB =
∑

ci
Nci

(µci
− x)(µci

− x)T

where µci
= N−1

ci

∑

j∈ci
xj ; x̄ = N−1

∑

j xj (Nci
is the
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Figure 1: Toy data set. AdaBoost classifier is shown on the left. GSLDA

classifier (forward pass) is shown on the right. ×’s and ◦’s represent pos-

itive and negative samples, respectively. Weak classifiers are plotted as

lines. The number on the line indicates the order in which weak classifiers

are selected. For AdaBoost, subsequent decision stumps attempt to balance

weighted positive and negative error. For AdaBoost, the third weak classi-

fier classifies all samples as negative due to the very small positive sample

weights. For GSLDA, subsequent decision stumps are selected based on

the maximum class separation criterion.

number of samples in class ci and N is the total number of

samples). This extra information is helpful for detection on

imbalanced data.

As an illustrative example, we generated an artificial data

set similar to one used in [3]. We learn AdaBoost and LDA

classifiers consisting of 4 linear weak classifiers and the re-

sults are shown in Fig. 1. From the figure, let the first weak

classifier (#1) selected by both algorithms to be the linear

classifier with minimal error. AdaBoost then re-weights the

samples and selects the next classifier (#2) which has the

smallest weighted error. From the figure, the second weak

classifier (#2) introduces more false positives to the final

classifier. Since, most positive samples are correctly clas-

sified, the positive samples’ weights are close to zero. Ad-

aBoost selects the next classifier (#3) which classifies all

samples as negative. In contrast to AdaBoost, GSLDA se-

lects the second and third weak classifier (#2,#3) based on

the maximum class separation criterion. Only the linear

classifier whose outputs yields the maximum distance be-

tween two classes is selected. As a result, the selected linear

classifiers introduce much fewer false positives (Fig. 1).

In the context of highly skewed example distribution,

since AdaBoost minimizes exponential loss, it does not

minimize the number of false negatives. As a result, the se-

lected features are no longer optimal for the task of rejecting

negative examples [3]. AsymBoost is therefore proposed.

AsymBoost updates the sample weights before each round

of boosting with the extra exponential term that causes the

algorithm to gradually pay more attention to positive sam-

ples in each round of boosting. Our scheme based on LDA’s

class-separability can be considered as an alternative clas-

sifier to Asymmetric AdaBoost that also takes asymmetry

information into consideration.

2.3. Boosted Greedy Sparse LDA

Before we introduce the concept of BGSLDA, we give

a brief explanation of boosting algorithms. Boosting was

originally designed for classification problems. It combines



the output of many weak classifiers to produce a single

strong learner. A weak classifier is defined as a classifier

with accuracy on the training sets slightly better than av-

erage. There exist many variants of boosting algorithms,

e.g., AdaBoost (exponential loss), GentleBoost (regression

with weighted least square methods), LogitBoost (logistic

regression loss) [10], LPBoost (hinge loss) [11], etc. All of

them have an identical property of sample re-weighting and

weighted majority voting. Among them, AdaBoost might

be the most popular one. It greedily constructs an addi-

tive combination of weak classifiers such that the exponen-

tial loss L(y, F (x)) = exp[−yF (x)] is minimized. Here

x’s are training examples and y’s are labels; F (x) is the fi-

nal decision function which outputs the decided class label.

Each training sample receives a weight ui that determines

its significance for training the next weak classifier. In each

boosting iteration, the value of αt is computed and the sam-

ple weights are updated according to the exponential rule.

AdaBoost then selects a new hypothesis h(·) that best clas-

sifies updated training samples with minimal weighted clas-

sification error. The final decision rule F (·) is a linear com-

bination of the selected weak classifiers weighted by their

coefficients αt. The classifier decision is given by the sign

of the linear combination F (x) = sign
(∑T

t=1 αtht(x)
)
,

where αt is a weight coefficient; ht(·) is a weak learner

and T is the total number of weak classifiers. The ex-

pression of the above equation is similar to an expression

used in dimensionality reduction where F (x) can be con-

sidered as the result of linearly projecting the random vec-

tor [h1(x), h2(x), · · · ] onto a 1D space along the direction

of α.

In previous section, we have introduced the concept of

GSLDA in the domain of object detection. However, de-

cision stumps used in GSLDA algorithm are learned only

once to save computation time. In other words, once

learned, an optimal threshold, which gives smallest classifi-

cation error on the training sets, remains unchanged during

GSLDA training. This speeds up the training process as

also shown in forward feature selection of [5]. However, it

limits the number of decision stumps available for GSLDA

classifier to choose from. As a result, GSLDA algorithm

fails to perform at its best. In order to achieve the best per-

formance from the GSLDA classifier, we propose to extend

decision stumps used in GSLDA training with sample re-

weighting techniques used in boosting methods. In other

words, each training sample receives a weight and the new

set of decision stumps are trained according to these sam-

ple weights. The objective criterion used to select the best

decision stump is similar to the one applied in step (2) in Al-

gorithm 1. Note that step (4) in Algorithm 2 is introduced

in order to speed up the GSLDA training process. In brief,

we remove decision stumps with weighted error larger than

ek + ǫ where ek = 1
2 − 1

2βk, βk = max (
∑N

i=1 uiyiht(xi))

and N is the number of samples, yi is the class label of sam-

ple xi, ht(xi) is the prediction of the training data xi using

weak classifier ht.

Given the set of decision stumps, GSLDA selects the

stump which results in maximum class separation (step (4)).

The sample weights can be updated using different boosting

algorithm (step (5)). In our experiments, we use AdaBoost

[1] re-weighting scheme (BGSLDA - scheme 1).

u
(t+1)
i =

u
(t)
i exp(−αtyiht(xi))

Z(t+1)
, (3)

with Z(t+1) =
∑

i u
(t)
i exp(−αtyiht(xi)). Here αt =

log((1− et)/(et)) and et is the weighted error. We also use

Asymmetric AdaBoost [3] re-weighting scheme (BGSLDA

- scheme 2).

u
(t+1)
i =

u
(t)
i exp(−αtyiht(xi)) exp( 1

T
yi log

√
k)

Z(t+1)
, (4)

with Z(t+1) =
∑

i u
(t)
i exp(−αtyiht(xi)) exp( 1

T
yi log

√
k)

where T is the total number of boosting iterations and k
is an asymmetric factor. Since, BGSLDA based object

detection framework has the same input/output as GSLDA

based detection framework, we replace line 2 − 10 in

Algorithm 1 with Algorithm 2.

while Ftarget < Fi do
i = i + 1; t = 0; ft = 1 (false positive rate);

while fi > Fmax do
(1) t = t + 1;

(2) Normalize sample weights so that the sum of sample weights

is equal to 1.

(3) Train decision stumps by finding an optimal threshold θ
for each weak classifier h(), using the training set and sample

weights;

(4) Remove decision stumps with weighted error > ek + ǫ (sec-

tion 2.3);

(5) Add decision stump whose output yields the maximum class

separation;

(6) Update sample weights in the AdaBoost manner (Eq. 3) or

AsymBoost manner (Eq. 4);

(7) Lower threshold such that Dmin holds;

(8) Update ft using this threshold;

Di = Di−1 × Dmin; Fi = Fi−1 × ft; and remove correctly

classified negative samples from the training set;

if Ftarget < Fi then
Evaluate the current cascaded classifier on the negative images

and add misclassified samples into the negative training set;

Algorithm 2: The training algorithm for building the cascade of BGSLDA

object detector.

2.4. Training time complexity of BGSLDA

In order to analyze the complexity of the proposed sys-

tem, we need to analyze the complexity of boosting and

GSLDA training. Let the number of training samples in

each cascade layer be N . For boosting, finding the opti-

mal threshold of each feature needs O(N log N). Assume



that the size of the feature set is M and the number of

weak classifiers to be selected is T . The time complex-

ity for training boosting classifier is O(MTN log N). The

time complexity for GSLDA forward pass is O(NMT +
MT 3). O(N) is the time complexity for finding mean

and variance of each features. O(T 2) is the time com-

plexity for calculating correlation for each feature. Since,

we have M features and the number of weak classifiers

to be selected is T , the total time for complexity for

GSLDA is O(NMT + MT 3). Hence, the total time com-

plexity is O( MTN log N
︸ ︷︷ ︸

weak classifier learning

+NMT + MT 3

︸ ︷︷ ︸

GSLDA

). Since, T

is often small (< 200) in cascaded structure, the term

O(MTN log N) often dominates. In other words, most of

the computation time is spent on training weak classifiers.

3. Experiments

The experimental section is organized as follows. The

datasets used in this experiment, including how the perfor-

mance is analyzed, are described. Experiments and the pa-

rameters used are then discussed. Finally, experimental re-

sults and analysis of different techniques are compared.

3.1. Face detection with the GSLDA classifier

Due to its efficiency, Haar-like rectangle features [1]

have become a popular choice as image features in the con-

text of face detection. Similar to the work in [1], the weak

learning algorithm known as decision stump and Haar-like

rectangle features are used here due to their simplicity and

efficiency. The following experiments compare AdaBoost

and GSLDA learning algorithms in their performances in

the domain of face detection. For fast AdaBoost training

of Haar-like rectangle features, we apply the precomputing

technique similar to [5].

3.1.1 Performances on single node classifiers

This experiment compares single strong classifier learned

using AdaBoost and GSLDA algorithms in their classifica-

tion performance. The datasets consist of three training sets

and two test sets. Each training set contains 2,000 face ex-

amples and 2, 000 non-face examples (Table 1). The faces

were cropped and rescaled to images of size 24× 24 pixels.

For non-face examples, we randomly selected 10, 000 ran-

dom non-face patches from non-face images obtained from

the internet.

# data splits faces/split non-faces/split

Train 3 2000 2000

Test 2 2000 2000

Table 1: The size of training and test sets used on single node classifier.

For each experiment, three different classifiers are gen-

erated, each by selecting two out of the three training sets

and the remaining training sets for validation. The perfor-

mance is measured by two different curves:- the test error

rate and the classifier learning goal (the false alarm error

rate on test sets given that the detection rate on the vali-

dation sets is fixed at 99%). A 95% confidence interval

of the true mean error rate is given by the t-distribution.

In this experiment, we test two different approaches of

GSLDA: forward-pass GSLDA and dual-pass (greedy for-

ward feature selection method followed by greedy back-

ward elimination method) GSLDA. The results are shown

in Fig. 2. The following observations can be made from

these curves. Having the same number of learned Haar-

like rectangle features, GSLDA achieves a comparable error

rate to AdaBoost on test sets (Fig. 2(a)). GSLDA seems to

perform slightly better with less number of Haar-like fea-

tures (< 100) while AdaBoost seems to perform slightly

better with more Haar-like features (> 100). However, both

classifiers perform almost similarly within 95% confidence

interval of the true error rate. This indicates that features

selected using GSLDA classifier are as meaningful as fea-

tures selected using AdaBoost classifier. From the curve,

GSLDA with bi-directional search yields better results than

GSLDA with forward search only. Fig. 2(b) shows the

false positive error rate on test sets. From the figure, both

GSLDA and AdaBoost achieve a comparable false positive

error rate on test sets.

3.1.2 Performances on cascades of strong classifiers

In this experiment, we used 5, 000 mirrored faces from pre-

vious experiment. The non-face samples used in each cas-

cade layer are collected from false positives of the previous

stages of the cascade (bootstrapping). The cascade train-

ing algorithm terminates when there are not enough nega-

tive samples to bootstrap. For fair evaluation, we trained

both techniques with the same number of weak classifiers

in each cascade. Note that since dual pass GSLDA (for-

ward+backward search) yields better solutions than the for-

ward search in the previous experiment, we use dual pass

GSLDA classifier to train a cascade of face detectors. We

tested our face detectors on the well known low resolution

faces dataset, MIT + CMU database. The complete set con-

tains 130 images with 507 frontal faces. In this experiment,

we set the scaling factor to 1.2 and window shifting step to

1. The technique used for merging overlapping windows is

similar to [1]. Detections are considered true or false posi-

tives based on the area of overlap with ground truth bound-

ing boxes. To be considered a correct detection, the area

of overlap between the predicted bounding box and ground

truth bounding box must exceed 50%. Multiple detections

of the same face in an image are considered false detections.



Fig. 3(a) and 3(b) show a comparison between the ROC

curves produced by GSLDA classifier and AdaBoost classi-

fier. In Fig. 3(a), the number of weak classifiers in each cas-

cade stage is predetermined while in Fig. 3(b), weak classi-

fiers are added to the cascade until the predefined objective

is met. The ROC curves show that GSLDA classifier out-

performs AdaBoost classifier at all false positive rates. We

think that by adjusting the threshold to the AdaBoost clas-

sifier (in order to achieve high detection rates with mod-

erate false positive rates), the performance of AdaBoost is

no longer optimal. Our findings in this work are consistent

with the experimental results reported in [3] and [5]. [5]

used LDA weights instead of weak classifiers’ weights pro-

vided by AdaBoost algorithm.

GSLDA not only performs better than AdaBoost but it

is also much simpler. Weak classifiers learning (decision

stumps) is performed only once for the given set of sam-

ples (unlike AdaBoost where weak classifiers have to be

re-trained in each boosting iteration). GSLDA algorithm

sequentially selects decision stump whose output yields the

maximum eigenvalue. The process continues until the stop-

ping criteria are met. Note that given the decision stumps

selected by GSLDA, any linear classifiers can be used to

calculate the weight coefficients. Based on our experi-

ments, using linear SVM (maximizing the minimum mar-

gin) instead of LDA also gives a very similar result to our

GSLDA detector. We believe that using one objective crite-

rion for feature selection and another criterion for classifier

construction would provide a classifier with more flexibil-

ity than using the same criterion to select feature and train

weight coefficients. These findings open up many more

possibilities in combining various feature selection tech-

niques with many existing classification techniques. We be-

lieve that a better and faster object detector can be built with

careful design and experiment.

Haar-like rectangle features selected in the first cascade

layer of both classifiers are shown in Fig. 5. Note that both

classifiers select Haar-like features which cover the area

around the eyes and forehead. Table 2 compares the two

cascaded classifiers in terms of the number of weak classi-

fiers and the average number of Haar-like rectangle features

evaluated per detection window. Comparing GSLDA with

AdaBoost, we found that GSLDA performance gain comes

at the cost of a higher computation time. This is not sur-

prising since the number of decision stumps available for

training GSLDA classifier is much smaller than the num-

ber of decision stumps used in training AdaBoost classi-

fier. Hence, AdaBoost classifier can choose a more power-

ful/meaningful decision stump. Nevertheless, GSLDA clas-

sifier outperforms AdaBoost classifier. This indicates that

the classifier trained to maximize class separation might be

more suitable in the domain where the distribution of posi-

tive and negative samples is highly skewed.

3.2. Face Detection with BGSLDA classifier

The following experiments compare BGSLDA and dif-

ferent boosting learning algorithms in their performances

for face detection. BGSLDA (weight scheme 1) corre-

sponds to GSLDA classifier with decision stumps being re-

weighted using AdaBoost scheme while BGSLDA (weight

scheme 2) corresponds to GSLDA classifier with decision

stumps being re-weighted using Asymmetric AdaBoost

scheme (for highly skewed sample distributions). Asym-

metric AdaBoost used in this experiment is from [3]. How-

ever, any asymmetric boosting approach can be applied here

e.g. [13, 14].

3.2.1 Performances on single node classifier

The experimental setup is similar to the one described in

previous section. The results are shown in Fig. 2. The fol-

lowing conclusions can be made from Fig. 2(c). Given the

same number of weak classifiers, BGSLDA always achieves

lower generalization error rate than AdaBoost. However, in

terms of training error, AdaBoost achieves lower training

error rate than BGSLDA. This is not surprising since Ad-

aBoost has a faster convergence rate than BGSLDA. From

the figure, AdaBoost only achieves lower training error rate

than BGSLDA when the number of Haar-like rectangle fea-

tures > 50. Fig. 2(d) shows the false alarm error rate. The

false positive error rate of both classifiers are quite similar.

3.2.2 Performances on cascades of strong classifiers

The experimental setup and evaluation techniques used here

are similar to the one described in section 3.1.1. The results

are shown in Fig. 3. Fig. 3(a) shows a comparison between

the ROC curves produced by BGSLDA (scheme 1) classi-

fier and AdaBoost classifier trained with the same number

of weak classifiers in each cascade. Both ROC curves show

that the BGSLDA classifier outperforms both AdaBoost and

AdaBoost+LDA [5]. Fig. 3(b) shows a comparison between

the ROC curves of different classifiers when the number of

weak classifiers in each cascade stage is no longer predeter-

mined. At each stage, weak classifiers are added until the

predefined objective is met. Again, BGSLDA significantly

outperforms other evaluated classifiers.

In the next experiment, we compare the performance of

BGSLDA (scheme 2) with other classifiers using Asymmet-

ric weight updating rule [3]. In other words, the asymmetric

multiplier exp( 1
T

yi log
√

k) is applied to every sample be-

fore each round of weak classifier training. The results are

shown in Fig. 4. Fig. 4(a) shows a comparison between the

ROC curves trained with the same number of weak clas-

sifiers in each cascade stage. Fig. 4(b) shows the ROC

curves trained with 99.5% detection rate and 50% false pos-

itive rate criteria. From both figures, BGSLDA (scheme 2)
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Figure 2: See text for details (best viewed in color). (a) Comparison of test error rates between GSLDA and AdaBoost. (b) Comparison of false alarm

rates on test sets between GSLDA and AdaBoost. The detection rate on the validated face sets is fixed at 99%. (c) Comparison of train and test error rates

between BGSLDA (scheme 1) and AdaBoost. (d) Comparison of false alarm rates on test sets between BGSLDA (scheme 1) and AdaBoost.
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Figure 3: Comparison of ROC curves on the MIT + CMU face test sets (a) with the same number of weak classifiers in each cascade stage on AdaBoost and

its variants. (b) with 99.5% detection rate and 50% false positive rate in each cascade stage on AdaBoost and its variants. BGSLDA (scheme 1) corresponds

to GSLDA classifier with decision stumps being re-weighted using AdaBoost scheme.
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Figure 4: Comparison of ROC curves on the MIT + CMU face test sets (a) with the same number of weak classifiers in each cascade stage on AsymBoost

and its variants. (b) with 99.5% detection rate and 50% false positive rate in each cascade stage on AsymBoost and its variants. BGSLDA (scheme 2)

corresponds to GSLDA classifier with decision stumps being re-weighted using Asymmetric AdaBoost scheme.

classifier outperforms other classifiers evaluated. BGSLDA

(scheme 2) classifier also outperforms BGSLDA (scheme

1) classifier. This indicates that asymmetric loss might be

more suitable in domains where the distribution of posi-

tive examples and negative examples is highly imbalanced.

Note that the performance gain between BGSLDA (scheme

1) and BGSLDA (scheme 2) is quite small compared with

the performance gain between AdaBoost and AsymBoost.

Since, LDA takes the number of samples of each class into

consideration when solving the optimization problem, we

believe this reduces the performance gap between BGSLDA

(scheme 1) and BGSLDA (scheme 2).

BGSLDA (scheme 1) not only outperforms GSLDA

but also performs at a faster speed (Table 2). Both

BGSLDA and AdaBoost perform at a comparable speed

on MIT+CMU dataset. However, compared with Ad-

aBoost+LDA and AsymBoost, the performance gain of

BGSLDA comes at the slightly higher cost in computation

time. Further investigation reveals that the higher compu-

tation time of BGSLDA is due to the different number of

weak classifiers in the first cascade layer. To achieve the

objective criteria of the cascade, BGSLDA requires only 6
weak classifiers while other classifiers require 7 weak clas-

sifiers. By having less number of weak classifiers in the first
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Figure 5: The first seven Haar-like rectangle features selected from the first layer of the cascades. The value below each Haar-like rectangle features indicates

the normalized feature weight. For AdaBoost, the value corresponds to the normalized α where α is computed from log((1−et)/et) and et is the weighted

error. For LDA, the value corresponds to the normalized w such that for input vector x and a class label y, w
T

x leads to maximum separation between

two classes.

method # stages total # weak

classifiers

avg. # Haar

features

AdaBoost [1] 22 1771 23.9
AdaBoost+LDA [5] 22 1436 22.3
GSLDA 24 2985 36.0
BGSLDA (scheme 1) 23 1696 24.2
AsymBoost [3] 22 1650 22.6
AsymBoost + LDA [5] 22 1542 21.5
BGSLDA (scheme 2) 23 1621 24.9

Table 2: Comparison based on different methods. The number of cas-

cade stages and total weak classifiers were obtained from the classifiers

trained to achieve a detection rate of 99.5% and the maximum false posi-

tive rate of 50% in each cascade layer. The average number of Haar-like

rectangles evaluated was obtained from evaluating the trained classifiers

on MIT+CMU face test sets.

stage, BGSLDA loses some of its ability to reject non-face

patches efficiently compared to other classifiers. In terms

of cascade training time, based on our Intel R©CoreTM2 Duo

CPU T7300 with 4-GB RAM, the total training time of

BGSLDA was less than one day.

As mentioned in [15] that a more general technique for

generating discriminating hyperplanes is to define the total

within-class covariance matrix as

Sw =
∑

xi∈C1
(xi − µ1)(xi − µ1)

T

+ γ
∑

xi∈C2
(xi − µ2)(xi − µ2)

T , (5)

where µ1 and µ2 are the mean of class 1 and class 2,

respectively. The weighting parameter γ controls the

weighted classification error. We conducted an experiment

on BGSLDA (scheme 1) with different value of γ and found

the results to be very similar.

4. Conclusion

In this work, we have proposed an alternative approach

in the context of face detection, termed Greedy Sparse LDA

(GSLDA) [2], which aims to maximize the class separation

criterion. Based on our experiments, this technique out-

performs AdaBoost when the distribution of positive and

negative samples is highly skewed. To further improve

the detection result, we have proposed Boosted GSLDA

which combines boosting re-weighting scheme with deci-

sion stumps used for training GSLDA algorithm. The ex-

perimental results on face detection show that the perfor-

mance of BGSLDA is better than that of AdaBoost at simi-

lar computation cost.
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